
dense basis
Release v 0.1.9

Jul 14, 2022

General Usage:

1 Installation 3

2 Dependencies 5

3 Features 7

4 The GP-SFH module 9
4.1 Creating different shapes using SFH-tuples . 9

5 A full SED-Fitting example 15
5.1 Note: If you’re using a version older than 0.1.4, the syntax for computing atlases has changed. Please

update to the current version to be consistent with the tutorial and examples. 15

6 Prerequisites to fitting: 17
6.1 1. Instantiate a Priors() object . 17
6.2 2. Generate an atlas of parameters drawn from the prior and their corresponding SEDs. 18
6.3 3. Generate a mock SED to be fit. 19

7 SED fitting with the dense_basis package: 21
7.1 4. Load the previously generated atlas: . 21
7.2 5. Fit the SED and visualize the parameter posteriors: . 21
7.3 6. Visualize the posterior SFH and spectrum: . 22
7.4 7. Compare with MCMC results . 24

8 Adding custom filter sets 27

9 SFH reconstruction test suite 31
9.1 Different SFH shapes: . 31
9.2 Plotting posteriors after fitting these SFHs: . 32

10 Contribute 37

11 Support 39

12 License & Attribution 41

13 Indices and tables 43

i

Python Module Index 45

Index 47

ii

dense basis, Release v 0.1.9

dense_basis is an implementation of the Dense Basis method tailored to SED fitting - in particular, the task of recover-
ing accurate star formation history (SFH) information from galaxy spectral energy distributions (SEDs). The current
code is being adapted from its original use-case (simultaneously fitting specific large catalogs of galaxies) to being a
general purpose SED fitting code, and acting as a module to compress and decompress SFHs and other time-series.

General Usage: 1

https://iopscience.iop.org/article/10.3847/1538-4357/ab2052/meta

dense basis, Release v 0.1.9

2 General Usage:

CHAPTER 1

Installation

The current version of the dense_basis module has a few dependencies (see this) that need to be set up before running
this package. Once these are met, the package can be installed as follows:

git clone https://github.com/kartheikiyer/dense_basis.git
cd dense_basis
python setup.py install

The code will default to looking for filter lists in a filters/ directory, and will build and store atlases in a pregrids/
directory within the current working directory. If you would like to supply your own paths, please provide either the
relative or absolute paths as inputs to the relevant functions using the filt_dir or path arguments.

3

dense basis, Release v 0.1.9

4 Chapter 1. Installation

CHAPTER 2

Dependencies

• FSPS and python-FSPS (v.0.3.0+): The current implementation of the dense_basis method uses a backend based
on Flexible Stellar Population Synthesis (FSPS; Conroy, Gunn, & White 2009, ApJ, 699, 486; Conroy & Gunn
2010, ApJ, 712, 833) to generate spectra corresponding to a set of stellar population parameters. Since this
is originally a Fortran package, we use the python-FSPS (Foreman-Mackey, Sick and Johnson, 2014) set of
bindings to call FSPS from within python. Installation instructions for these packages can be found at their
respective homepages: FSPS and python-FSPS.

• Astropy (v.3.2.1+): For redshift and distance calculations based on different cosmologies.

• George (v.0.3.1+): We use the George package (Ambikasaran et al. 2014) to implement Gaussian processes.

• Scikit-Learn (v.0.21.2+): can be used as an alternative to George, although it doesn’t perform as well.

• Corner (v.2.0.1+): Foreman-Mackey (2016) is used to plot prior and posterior distributions.

• Numpy, Scipy, Matplotlib

• This code is written in Python 3.8.

5

https://github.com/cconroy20/fsps
http://dfm.io/python-fsps/current/
https://github.com/cconroy20/fsps
http://dfm.io/python-fsps/current/
https://george.readthedocs.io/en/latest/
http://arxiv.org/abs/1403.6015
https://corner.readthedocs.io/en/latest/

dense basis, Release v 0.1.9

6 Chapter 2. Dependencies

CHAPTER 3

Features

• GP-SFH module: A module that can convert SFH-tuples to smooth curves in SFR vs time space, and vice-
versa. This module can also be used to create GP-approximations for any input SFH curve (e.g., SFHs from
simulations).

• Prior atlas generator - A set of functions that can generate SEDs corresponding to input stellar population
parameters using the FSPS backend. Taken in conjunction with the db.Priors() class, this can be used to sample
prior distributions and trade space for time complexity while fitting SEDs.

• SED fitter module - Functions for evaluating the goodness-of-fit given an observed SED with uncertainties, and
plotting posterior distributions in parameter- and SFH-space.

7

dense basis, Release v 0.1.9

8 Chapter 3. Features

CHAPTER 4

The GP-SFH module

4.1 Creating different shapes using SFH-tuples

The dense_basis code contains a module for creating smooth star formation history from a tuple consisting of
(M:math:_*, SFR, {𝑡𝑋}) - the stellar mass, star formation rate, and a set of lookback times at which the galaxy forms
N equally spaced quantiles of its stellar mass.

This parametrization comes with a lot of flexibility, and allows us to create a large range of SFH shapes even with a
small number of parameters. Here we show a few examples, showing how we create a variety of different SFH shapes
with just 2 free parameters - the SFR and the t50.

[1]: import dense_basis as db
import numpy as np
import matplotlib.pyplot as plt

Starting dense_basis. please wait ~ a minute for the FSPS backend to initialize.

[2]: Nparam = 1
redshift = 1.0
logMstar = 10.0

Let’s start with an SFH that is rising throughout a galaxy’s lifetime, such as may be expected for high-redshift
star forming galaxies. Since we are considering a galaxy with 𝑀* = 1010𝑀⊙ at z=1, we choose a reasonably high
SFR of 10 𝑀⊙/𝑦𝑟. Since the SFR is rising, we also choose a short 𝑡50, since it is rapidly building forming its stars.
Running this through the model, we get:

[3]: logSFR = 1.0
t50 = 0.6 # t50, lookback time, in Gyr

sfh_tuple = np.hstack([logMstar, logSFR, Nparam, db.scale_t50(t50,redshift)])
sfh, timeax = db.tuple_to_sfh(sfh_tuple, redshift)

fig = db.plot_sfh(timeax, sfh, lookback=True)

(continues on next page)

9

dense basis, Release v 0.1.9

(continued from previous page)

plt.title('Rising SFH')
plt.show()

We next consider the case of reasonably steady star formation. This is different from constant star formation,
because SFR goes to 0 smoothly as we approach the big bang. In this case, we choose an SFR closer to the expected
lifetime average for a massive galaxy at z=1, and a 𝑡50 close to half the age of the universe at the redshift of observation.
Doing this gives us:

[4]: logSFR = 0.335
t50 = 2.3 # t50, lookback time, in Gyr

sfh_tuple = np.hstack([logMstar, logSFR, Nparam, db.scale_t50(t50,redshift)])
sfh, timeax = db.tuple_to_sfh(sfh_tuple, redshift)

fig = db.plot_sfh(timeax, sfh, lookback=True)
plt.title('Steady SFH')
plt.show()

We now look at the class of quenched and quenching galaxies.

10 Chapter 4. The GP-SFH module

dense basis, Release v 0.1.9

For the post-starburst SFH, we create a similar setup to the rising SFH, but with a low SFR at the time of
observation. Since the galaxy still formed a lot of stars in the recent past but is not doing so now, this creates the
distinctive post-starburst shape.

[5]: logSFR = 0.5
t50 = 0.6 # t50, lookback time, in Gyr

sfh_tuple = np.hstack([logMstar, logSFR, Nparam, db.scale_t50(t50,redshift)])
sfh, timeax = db.tuple_to_sfh(sfh_tuple, redshift)

fig = db.plot_sfh(timeax, sfh, lookback=True)
plt.title('Post-starburst SFH')
plt.show()

We also consider two simple types of quenched galaxies, obtained easily by setting the recent SFR to a very
low value. To consider the different possible shapes for a quenched SFH, we use a recent and an older value for the
𝑡50, to obtain SFHs that quenched either gradually or aburptly.

[6]: logSFR = -3.0
t50 = 4.6 # t50, lookback time, in Gyr

sfh_tuple = np.hstack([logMstar, logSFR, Nparam, db.scale_t50(t50,redshift)])
sfh, timeax = db.tuple_to_sfh(sfh_tuple, redshift)

fig = db.plot_sfh(timeax, sfh, lookback=True)
plt.title('Old Quiescent SFH')
plt.show()

4.1. Creating different shapes using SFH-tuples 11

dense basis, Release v 0.1.9

[7]: logSFR = -3.0
t50 = 1.7 # t50, lookback time, in Gyr

sfh_tuple = np.hstack([logMstar, logSFR, Nparam, db.scale_t50(t50,redshift)])
sfh, timeax = db.tuple_to_sfh(sfh_tuple, redshift)

fig = db.plot_sfh(timeax, sfh, lookback=True)
plt.title('Young Quiescent SFH')
plt.show()

Finally, we also consider the case of a rejuvenated SFH, which had a significant lull between two periods of
active star formation. To create an example of this kind of SFH, we use a reasonably large 𝑡50, which tells the GP-SFH
module that the galaxy formed 50% of its stars early on. Coupled with an SFR that indicates active star formation at
the time of observation, this means that there had to be a period between these two when the galaxy did not form a lot
of mass, leading to this distinctive shape.

[8]: logSFR = 0.5
t50 = 4.0 # t50, lookback time, in Gyr

(continues on next page)

12 Chapter 4. The GP-SFH module

dense basis, Release v 0.1.9

(continued from previous page)

sfh_tuple = np.hstack([logMstar, logSFR, Nparam, db.scale_t50(t50,redshift)])
sfh, timeax = db.tuple_to_sfh(sfh_tuple, redshift)

fig = db.plot_sfh(timeax, sfh, lookback=True)
plt.title('Rejuvenated SFH')
plt.show()

4.1. Creating different shapes using SFH-tuples 13

dense basis, Release v 0.1.9

14 Chapter 4. The GP-SFH module

CHAPTER 5

A full SED-Fitting example

This tutorial goes through the things that need to be done to fit the observed spectral energy distributions (SEDs)
of galaxies. This is different from SED fitting codes that use a sampler while fitting to create their posteriors, in
the sense that we pre-sample the prior volume prior to fitting, trading space for time complexity. This results in a
moderately lengthy initialization period where the method generates an atlas of parameters drawn from the priors and
SEDs corresponding to these parameters with a user-specified filter-set, which can then be used to fit any number of
SEDs in an extremely short amount of time. (Further iterations of the code are also planned to include variants with
live samplers for edge-cases and objects with pathological likelihood surfaces.)

The atlas essentially provides a coarse mapping from the galaxy’s stellar population parameters (stellar mass, SFR,
star formation history, dust attenuation, metallicity, and redshift) to their corresponding SEDs.

Instantiate the module, making sure you have all the prerequisite packages (especially python-fsps and george) in-
stalled. Don’t worry if the initial import takes a few minutes, because it’s initializing its FSPS backend.

If you need to change any of the FSPS parameters, do so using db.mocksp.params['key'] = value, con-
sulting the python-fsps API for reference.

5.1 Note: If you’re using a version older than 0.1.4, the syntax for
computing atlases has changed. Please update to the current
version to be consistent with the tutorial and examples.

[1]: import numpy as np
import matplotlib.pyplot as plt
import dense_basis as db
print('DB version: ',db.__version__)

Starting dense_basis. please wait ~ a minute for the FSPS backend to initialize.
DB version: 0.1.8

15

http://dfm.io/python-fsps/current/stellarpop_api/#api-reference

dense basis, Release v 0.1.9

16 Chapter 5. A full SED-Fitting example

CHAPTER 6

Prerequisites to fitting:

If you’re fitting photometry, put your photometric filter transmission curves in a folder somewhere and make a list of
filter curves with the paths to each filter. You’ll need to pass filter_list and filt_dir as arguments to the
code to generate SEDs corresponding to a given parameter set.

The db.plot_filterset() function can be used to visualize the set of filter curves used to make SEDs. Let’s
load a filter list corresponding to the CANDELS GOODS-South photometric catalog for now:

[2]: filter_list = 'filter_list_goodss.dat'
filt_dir = 'internal' # path to directory containing filter list
db.plot_filterset(filter_list = filter_list, filt_dir = filt_dir)

6.1 1. Instantiate a Priors() object

The next step is to generate a template atlas that you will use for fitting. The advantage of doing this is that we trade
time-complexity for space, which is usually much more abundant, and it only needs to be done once to fit a large

17

dense basis, Release v 0.1.9

dataset. Before doing this, however, we need a set of priors that we can draw from to generate this atlas. This is done
using the db.Priors() class:

[3]: priors = db.Priors()
priors.tx_alpha = 3.0
priors.plot_prior_distributions()

6.2 2. Generate an atlas of parameters drawn from the prior and their
corresponding SEDs.

Now we can use the priors object to generate the atlas. The important arguments here are the size of the atlas
(N_pregrid), which samples from the overall multidimensional prior distributions, and the number of SFH param-

18 Chapter 6. Prerequisites to fitting:

dense basis, Release v 0.1.9

eters (priors.Nparam). The generated atlas is then stored in a local /pregrids folder with the user-specified
fname within the current working directory. Please specify a different path using the path argument if you would
like it to be stored in a different place. The first few SEDs take time to compute because every time FSPS encounters
a new metallicity value it needs to load a grid into memory. This happens only once, and when it is done, the atlas
generation process speeds up considerably.

[4]: fname = 'test_atlas'
N_pregrid = 10000
priors.Nparam = 3
path = 'pregrids/'
db.generate_atlas(N_pregrid = N_pregrid,

priors = priors,
fname = fname, store=True, path='pregrids/',
filter_list = filter_list, filt_dir = filt_dir)

0%| | 0/10000 [00:00<?, ?it/s]

generating atlas with:
3 tx parameters, sSFRflat SFR sampling custom SFH treatment flat met sampling
→˓Calzetti dust attenuation exp dust prior False SFR decoupling.

100%|| 10000/10000 [13:21<00:00, 12.48it/s]

Path exists. Saved atlas at : pregrids/test_atlas_10000_Nparam_3.dbatlas

6.3 3. Generate a mock SED to be fit.

To illustrate the SED fitting procedure, let’s generate a mock star formation history (SFH) to recover. This can
be done by sampling our priors for an SFH-tuple and then converting it to a SFR-vs-time curve using the db.
tuple_to_sfh() command. We can then generate its corresponding spectrum, and multiply the spectrum with
our prespecified filter-set to get the corresponding SED.

[5]: # sample from the prior space to get parameters
rand_sfh_tuple, rand_Z, rand_Av, rand_z = priors.sample_all_params(random_seed = 1)

specdetails = [rand_sfh_tuple, rand_Av, rand_Z, rand_z]

generate an SFH corresponding to the SFH-tuple and see how it looks:
rand_sfh, rand_time = db.tuple_to_sfh(rand_sfh_tuple, zval = rand_z)
fig = db.plot_sfh(rand_time, rand_sfh, lookback=True)
sfh_truths = [rand_time, rand_sfh]

generate a corresponding spectrum and multiply by filter curves to get the SED:
obs_sed = db.makespec(specdetails, priors, db.mocksp, db.cosmo,

filter_list=filter_list,filt_dir=filt_dir,input_
→˓sfh=False)
obs_err = obs_sed * 0.1 # S/N of 10

store the true stellar mass and SFR
mstar_true = np.log10(db.mocksp.stellar_mass)
sfr_true = np.log10(db.mocksp.sfr)

sed_truths = (mstar_true, sfr_true, rand_sfh_tuple[3:], rand_Z, rand_Av, rand_z)
sed_truths = np.hstack(sed_truths)

6.3. 3. Generate a mock SED to be fit. 19

dense basis, Release v 0.1.9

20 Chapter 6. Prerequisites to fitting:

CHAPTER 7

SED fitting with the dense_basis package:

7.1 4. Load the previously generated atlas:

Step 2 is extremely beneficial in fitting large datasets, since the atlas needs to be generated only once and can be used
for fitting as many SEDs as needed using the brute-force Bayesian approach. Having generated this dataset, now an
arbitrary SED (obs_sed, and its errors obs_err) can be fit using the previously generated atlas.

[6]: # load the atlas
atlas = db.load_atlas(fname, N_pregrid = N_pregrid, N_param = priors.Nparam, path =
→˓path)

pass the atlas and the observed SED + uncertainties into the fitter,
sedfit = db.SedFit(obs_sed, obs_err, atlas, fit_mask=[])

evaluate_likelihood returns the likelihood for each SED in the atlas and the norm
→˓value to
best match the observed SED with the atlas.
sedfit.evaluate_likelihood()

evaluate_posterior_percentiles calculates the 16,50,84th percentiles for
the physical parameters - stellar mass, SFR, tx, dust, metallicity and redshift
sedfit.evaluate_posterior_percentiles()

7.2 5. Fit the SED and visualize the parameter posteriors:

If we are interested in the full posteriors of the fit, this can be visualized by making the fitter return the chi2 array and
then computing the full posteriors as prior*likelihood. Let’s see how it compares to the truth:

[7]: %timeit sedfit.evaluate_likelihood()

6.76 ms ± 37.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

21

dense basis, Release v 0.1.9

[8]: print('log Stellar Mass: %.2f' %sedfit.mstar[0])
print('log SFR: %.2f' %sedfit.sfr[0])

log Stellar Mass: 11.06
log SFR: -0.03

[9]: sedfit.plot_posteriors(truths=sed_truths)
plt.show()

7.3 6. Visualize the posterior SFH and spectrum:

Finally, we can also plot the posterior SFH and see how it compares to the true SFH:

22 Chapter 7. SED fitting with the dense_basis package:

dense basis, Release v 0.1.9

[10]: sedfit.plot_posterior_SFH(sedfit.z[0])
plt.plot(np.amax(sfh_truths[0]) - sfh_truths[0],sfh_truths[1],lw=3)
plt.show()

[11]: # deprecated code - use if you're using v.0.1.5 or older

db.plot_SFH_posterior(chi2_array, norm_fac, obs_sed, atlas,
truths = sfh_truths, sfh_threshold = 0.7)

[12]: centers_goods_s = np.array([3734,3722,4317,5918,7693,8047,9055,9851,10550,12486,15370,
→˓21605,21463,35508,44960,57245,78840])
sedfit.plot_posterior_spec(centers_goods_s, priors)
plt.show()

7.3. 6. Visualize the posterior SFH and spectrum: 23

dense basis, Release v 0.1.9

7.4 7. Compare with MCMC results

The dense_basis package also has an extremely fast MCMC sampler now available, for when the uncertainties need
to be sampled more robustly, multi-modal solutions further investigated, or when SEDs might lie on the edge of the
prior space. This uses the excellent emcee package (so make sure that’s installed before you try to run the following),
and returns an emcee.sampler object. Let’s try running this with the galaxy above and see what we get for the
posteriors.

[13]: sampler = db.run_emceesampler(obs_sed, obs_err, atlas, epochs=10000, plot_
→˓posteriors=True)

100%|| 10000/10000 [00:44<00:00, 225.26it/s]

24 Chapter 7. SED fitting with the dense_basis package:

https://emcee.readthedocs.io/

dense basis, Release v 0.1.9

7.4. 7. Compare with MCMC results 25

dense basis, Release v 0.1.9

26 Chapter 7. SED fitting with the dense_basis package:

CHAPTER 8

Adding custom filter sets

The code now has the functionality to add custom filter response functions, along with the pre-built functionality to
use the default filter sets for the five CANDELS fields. To see how this works, let’s load up the module:

[1]: import dense_basis as db
import os

Starting dense_basis. please wait ~ a minute for the FSPS backend to initialize.
Initialized stellar population with FSPS.

The set of filters is specified by two arguments: filter_list, which is a file that contains a list of filters along with
relative paths specifying where the various filters are, and filt_dir, which specifies the absolute directory where
the filter_list can be found.

To use one of the default available lists, simply set filt_dir = 'internal', and specify one of the CANDELS
fields as shown below. The db.plot_filterset command loads the filters and plots their transmission values as
a function of wavelength.

[2]: filter_list = 'filter_list_goodss.dat'
filt_dir = 'internal' # path to directory containing filter list
db.plot_filterset(filter_list = filter_list, filt_dir = filt_dir)

27

dense basis, Release v 0.1.9

To specify your own custom set of filters and use them in the Dense Basis code, do the following:

1. Collect all of your individual filter transmission curves in one place. In the example below, I’m using two filters,
named (wfc3_ir_160.txt) and (Filter04_ACS_f606w_2.dat). Both of these files contain a list of wavelengths and
their corresponding filter response values that can be downloaded from sites like the SVO filter profile service.
Put them in a folder if you’d like. For this example, I’ve kept mine in a folder named (filter_curves) within my
working directory.

2. Create a filter_list file. In this case, I made a file in my working directory named test_list.dat,
containing two lines, each of which specifies the relative path to a single filter:

[]: filter_curves/wfc3_ir_160.txt
filter_curves/Filter04_ACS_f606w_2.dat

3. We’re almost done. Now get the absolute path to the working directory (the one containing test_list.dat)
using db.get_path. Pass these in as inputs, and plot them to confirm everything is working as expected:

[3]: filter_list = 'test_list.dat'
filt_dir = db.get_path(filter_list) # path to directory containing filter list
db.plot_filterset(filter_list = filter_list, filt_dir = filt_dir)

28 Chapter 8. Adding custom filter sets

http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=HST/WFC3_IR.F160W

dense basis, Release v 0.1.9

[]:

29

dense basis, Release v 0.1.9

30 Chapter 8. Adding custom filter sets

CHAPTER 9

SFH reconstruction test suite

Now that we have started up the package and built an atlas, let’s see how we do at fitting SFHs for various galaxy
demographics - starforming, starbursting, quenched and rejuvenated galaxies. First thing, let’s load the package:

[1]: import numpy as np
import dense_basis as db

Starting dense_basis. please wait ~ a minute for the FSPS backend to initialize.
Initialized stellar population with FSPS.

Next we load the atlas that we built previously, with

[2]: fname = 'test_atlas'
N_pregrid = 300000
Nparam = 3
path = 'internal'

pg_sfhs, pg_Z, pg_Av, pg_z, pg_seds, norm_method = db.load_atlas(fname, N_pregrid,
→˓Nparam, path=path)
pg_theta = [pg_sfhs, pg_Z, pg_Av, pg_z, pg_seds]

9.1 Different SFH shapes:

We now define SFH-tuples corresponding to galaxies from different demographics, as follows:

[3]: rising_sfh = np.array([10.0,1.5,3,0.5,0.7,0.85])
regular_sfg_sfh = np.array([10.0,0.35,3,0.3,0.55,0.8])
post_starburst_sfh = np.array([10.0,0.6,3,0.5,0.8,0.9])
old_quenched_sfh = np.array([10.0,-10.0,3,0.15,0.3,0.5])
double_peaked_SF_sfh = np.array([10.0,0.5,3,0.25,0.30,0.7])
double_peaked_Q_sfh = np.array([10.0,-1.0,3,0.1,0.6,0.7])

(continues on next page)

31

dense basis, Release v 0.1.9

(continued from previous page)

sfh_list = [rising_sfh, regular_sfg_sfh, post_starburst_sfh, old_quenched_sfh, double_
→˓peaked_SF_sfh, double_peaked_Q_sfh]
sfh_names = ['Rising/Starburst galaxy', 'Regular star-forming galaxy', 'Post-
→˓Starburst galaxy', 'Quiescent SFH', 'Double-peaked SFH [SF]', 'Double-peaked SFH
→˓[quiescent]']

9.2 Plotting posteriors after fitting these SFHs:

We then loop through these SFHs, and - generate corresponding SEDs with randomly sampled values for dust, metal-
licity, and redshifts (although 𝑧 ∼ 1) - fit these SEDs using the dense basis SED fitter, and - use the resulting likelihood
surface to plot and SFH posterior, comparing it to the truth

Since FSPS takes a while to load up the grids corresponding to different metallicities, the following cell might take a
while when executed the first time, but subsequent runs should be fast.

[4]: priors = db.Priors()
priors.Nparam = Nparam
priors.tx_alpha = 3.0

[5]: def sfh_fitting_test(sfh_tuple, sfh_name, max_num = 1000):

print('---------- '+sfh_name+' ------------')

rand_sfh_tuple, rand_Z, rand_Av, rand_z = priors.sample_all_params_
→˓safesSFR(random_seed = 7)

rand_sfh_tuple = sfh_tuple

generate an SFH corresponding to the SFH-tuple and see how it looks:
rand_sfh, rand_time = db.tuple_to_sfh(rand_sfh_tuple, zval = rand_z)
fig = db.plot_sfh(rand_time, rand_sfh, lookback=True)
sfh_truths = [rand_time, rand_sfh]

generate a corresponding spectrum and multiply by filter curves to get the SED:
_, sfr_true, mstar_true = db.make_spec(rand_sfh_tuple, rand_Z, rand_Av, rand_z,

→˓return_ms = True)
rand_spec, rand_lam = db.make_spec(rand_sfh_tuple, rand_Z, rand_Av, rand_z,

→˓return_lam = True)

filter_list = 'filter_list_goodss.dat'
filt_dir = 'internal'
obs_sed = db.calc_fnu_sed(rand_spec, rand_z, rand_lam, fkit_name = filter_list,

→˓filt_dir = filt_dir)
obs_err = obs_sed * 0.1 # S/N of 33
sed_truths = (mstar_true, sfr_true, rand_sfh_tuple[3:], rand_Z, rand_Av, rand_z)
sed_truths = np.hstack(sed_truths)

chi2_array = db.fit_sed_pregrid(obs_sed, obs_err,
pg_theta, return_val = 'chi2', norm_method=norm_method)

db.plot_SFH_posterior_v3(chi2_array, obs_sed, pg_theta, truths=sfh_truths, sfh_
→˓threshold=0.1, max_num = max_num)

32 Chapter 9. SFH reconstruction test suite

dense basis, Release v 0.1.9

[6]: for i in range(len(sfh_list)):

sfh_fitting_test(sfh_list[i], sfh_names[i])

---------- Rising/Starburst galaxy ------------
truncated to 1000 SFHs to reduce computation time. increase max_num if desired.

---------- Regular star-forming galaxy ------------
truncated to 1000 SFHs to reduce computation time. increase max_num if desired.

---------- Post-Starburst galaxy ------------
truncated to 1000 SFHs to reduce computation time. increase max_num if desired.

9.2. Plotting posteriors after fitting these SFHs: 33

dense basis, Release v 0.1.9

---------- Quiescent SFH ------------
truncated to 1000 SFHs to reduce computation time. increase max_num if desired.

---------- Double-peaked SFH [SF] ------------
truncated to 1000 SFHs to reduce computation time. increase max_num if desired.

34 Chapter 9. SFH reconstruction test suite

dense basis, Release v 0.1.9

---------- Double-peaked SFH [quiescent] ------------
truncated to 1000 SFHs to reduce computation time. increase max_num if desired.

We see that we do well in recovering the general shape of the SFHs, as well as derived quantities like stellar mass
and recent SFR. The poorer reconstructions are discussed below in a bit more detail: - Post-starburst galaxy: While
most of the true SFH is within the uncertainties, the reconstruction is not able to completely recover the recent SF
prior to the quenching. This is mostly a prior issue, with post-starburst galaxies disfavoured by our adopted prior - in
this case, going to larger Nparam or coupling the sSFR to the redshift allows for more variety in the SFH shapes and
helps recover this population. - Double-peaked quenched galaxy: while this performs reasonably well, the peaks
are poorly constrained due to low S/N from the old stellar populations. In this case, we actually find th older peak
to be better constrained mainly because the SFH has to be 0 at the big bang. This also leads to the uncertainties
not being estimated accurately, which is also usually mitigated by a larger atlas. - Old quiescent galaxy and the
double-peaked SF galaxy: This is simply a S/N issue. The fitter detects that the galaxy is quiescent, but doesn’t have
enough information to accurately constrain the older stellar populations, leading to the posterior being prior rather
than likelihood dominated.

The code is designed to be intuitive to use, and and consists of three steps to get you started doing SED fitting:

• defining your priors

• generating a model atlas (params <-> SEDs) to use while fitting

• actually fitting your data and visualizing the posteriors

More detailed descriptions of these modules can be found in the tutorials. If you are interested in going off the beaten
track and trying different things, please let me know so that I can help you run the code as you’d like!

9.2. Plotting posteriors after fitting these SFHs: 35

dense basis, Release v 0.1.9

36 Chapter 9. SFH reconstruction test suite

CHAPTER 10

Contribute

• Issue Tracker: https://github.com/kartheikiyer/dense_basis/issues

• Source Code: https://github.com/kartheikiyer/dense_basis

37

https://github.com/kartheikiyer/dense_basis/issues
https://github.com/kartheikiyer/dense_basis

dense basis, Release v 0.1.9

38 Chapter 10. Contribute

CHAPTER 11

Support

If you are having issues, please let me know at: kartheik.iyer@dunlap.utoronto.ca

39

mailto:kartheik.iyer@dunlap.utoronto.ca

dense basis, Release v 0.1.9

40 Chapter 11. Support

CHAPTER 12

License & Attribution

Copyright 2017-2019 Kartheik Iyer and contributors.

dense_basis is being developed by Kartheik Iyer in a public GitHub repository. The source code is made available
under the terms of the MIT license.

If you make use of this code, please cite the recent Dense Basis paper.

41

http://kartheikiyer.github.io
https://github.com/kartheikiyer/dense_basis
https://iopscience.iop.org/article/10.3847/1538-4357/ab2052/meta

dense basis, Release v 0.1.9

42 Chapter 12. License & Attribution

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

43

dense basis, Release v 0.1.9

44 Chapter 13. Indices and tables

Python Module Index

d
dense_basis, 1

45

dense basis, Release v 0.1.9

46 Python Module Index

Index

D
dense_basis (module), 1

47

	Installation
	Dependencies
	Features
	The GP-SFH module
	Creating different shapes using SFH-tuples

	A full SED-Fitting example
	Note: If you’re using a version older than 0.1.4, the syntax for computing atlases has changed. Please update to the current version to be consistent with the tutorial and examples.

	Prerequisites to fitting:
	1. Instantiate a Priors() object
	2. Generate an atlas of parameters drawn from the prior and their corresponding SEDs.
	3. Generate a mock SED to be fit.

	SED fitting with the dense_basis package:
	4. Load the previously generated atlas:
	5. Fit the SED and visualize the parameter posteriors:
	6. Visualize the posterior SFH and spectrum:
	7. Compare with MCMC results

	Adding custom filter sets
	SFH reconstruction test suite
	Different SFH shapes:
	Plotting posteriors after fitting these SFHs:

	Contribute
	Support
	License & Attribution
	Indices and tables
	Python Module Index
	Index

